High Voltage Single SPDT Analog Switch in SOT23-8

DESCRIPTION

The DG449 is a dual supply single-pole/double-throw (SPDT) switches. On resistance is 38Ω and flatness is 2.6Ω max over the specified analog signal range. These analog switches were designed to provide high speed, low error switching of precision analog signals. The primary application areas are in the routing and switching in telecommunications and test equipment. Combining low power, low leakages, low on-resistance and small physical size, the DG449 is also ideally suited for portable and battery powered industrial and military equipment.

The DG449 operates either from a single +7 V to 36 V supply or from dual $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ supplies. It is offered in the very popular, small SOT23-8 package.

FEATURES

- $\pm 15 \mathrm{~V}$ Analog Signal Range
- On-Resistance - $r_{\text {DS(on) }}$: 38Ω max
- $V_{\text {L }}$ Logic Supply Not Required
- TTL CMOS Input Compatible
- Rail To Rail Signal Handling
- Dual Or Single Supply Operation

BENEFITS

- Wide Dynamic Range
- Low Signal Errors and Distortion
- Break-Before-Make Switching Action
- Simple Interfacing
- Small SOT23-8ld package; Reduced Board Space
- Improved Reliability

APPLICATIONS

- Precision Test Equipment
- Precision Instrumentation
- Communications Systems
- PBX, PABX Systems
- Audio Equipment
- Redundant Systems
- PC Multimedia Boards
- Hard Disc Drives

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	NC	NO
0	ON	OFF
1	OFF	ON

Logic "0" $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

ORDERING INFORMATION							
Temp Range	Package		Part Number				
-40 to $85^{\circ} \mathrm{C}$	8 -Pin SOT23	DG449DS-T1-E3					

ABSOLUTE MAXIMUM RATINGS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted			
Parameter (Voltages Referenced to V-)	Symbol	Limit	Unit
V+		44	V
GND		25	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\text {no/nc }}$, $\mathrm{V}_{\text {COM }}$		$(\mathrm{V}-)-2 \mathrm{~V} \text { to }(\mathrm{V}+)+2 \mathrm{~V}$ or 30 mA , whichever occurs first	
Current, (Any Terminal) Continuous		30	mA
Current (NO, NC or COM) Pulsed at $1 \mathrm{~ms}, 10$ \% duty cycle		100	
Storage Temperature		- 65 to 150	${ }^{\circ} \mathrm{C}$
		675	mW

Notes:
a. Signals on NO, NC, COM, or IN exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $8.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

SPECIFICATIONS ${ }^{\text {a }}$							
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp ${ }^{\text {b }}$	$\begin{gathered} \text { D Suffix } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {d }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {d }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	-15		15	V
On-Resistance	ron	$\mathrm{Ino}_{\text {/nc }}=1 \mathrm{~mA}, \mathrm{~V}_{\text {COM }}= \pm 8.5 \mathrm{~V}$	Room Full		38	$\begin{aligned} & 45 \\ & 57 \end{aligned}$	
On Resistance MATCH	$\Delta^{\text {ON }}$	$\mathrm{V}+=13.5 \mathrm{~V}, \mathrm{~V}-=-13.5 \mathrm{~V}$	Room Full			5	Ω
On-Resistance Flatness	$r_{\text {ON }}$ Flatness	$\begin{gathered} \mathrm{Ino} / \mathrm{nc}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}= \pm 5 \mathrm{~V}, 0 \mathrm{~V} \\ \mathrm{~V}+=13.5 \mathrm{~V}, \mathrm{~V}-=-13.5 \mathrm{~V} \end{gathered}$	Room Full		2.6	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	
Switch Off Leakage Current	$I_{\text {no/nc(off) }}$	$V_{+}=16.5, V-=-16.5 \mathrm{~V}$	Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$	-0.1	$\begin{gathered} 1 \\ 10 \end{gathered}$	nA
	$\mathrm{I}_{\text {COM (off) }}$	$V_{\mathrm{no} / \mathrm{nc}}=-/+15.5 \mathrm{~V}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$	-0.1	$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
Channel On Leakage Current	$\mathrm{I}_{\text {COM(on) }}$	$\begin{gathered} \mathrm{V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \\ \mathrm{~V}_{\text {COM }}=\mathrm{V}_{\text {no/nc }}= \pm 15.5 \mathrm{~V} \end{gathered}$	Room Full	$\begin{aligned} & -2 \\ & -20 \end{aligned}$	-0.1	$\begin{gathered} \hline 2 \\ 20 \end{gathered}$	
Digital Control							
Input, High Voltage	$\mathrm{I}_{\text {INH }}$		Full	2.4			V
Input, Low Voltage	$\mathrm{I}_{\text {INL }}$		Full			0.8	
Input Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {IN }}$		Room		4		pF
Input Current $\mathrm{V}_{\text {IV }}$ High or Low	I_{IN}	$\mathrm{V}_{\text {IN }}=0$ or 5 V		-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{ON}	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{no} / \mathrm{nc}}= \pm 10 \mathrm{~V} \end{gathered}$	Room Full		107	$\begin{aligned} & 146 \\ & 155 \\ & \hline \end{aligned}$	ns
Turn-Off Time	$t_{\text {OFF }}$		Room Full		69	$\begin{aligned} & \hline 104 \\ & 116 \end{aligned}$	
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$	Room		5		pC
Off-Isolation ${ }^{\text {e }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-69		dB
Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$			-80		dB
Source NO, NC Off Capacitance ${ }^{\mathrm{e}}$	$\mathrm{C}_{\mathrm{no} / \mathrm{nc} \text { (off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room		8		
Channel On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {COM(on) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room		18		pF
Power Supplies							
Positive Supply Current	I+	$\begin{gathered} \mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=0,5 \mathrm{~V} \text { or, } \mathrm{V}+ \end{gathered}$	Room Full		4	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\mu \mathrm{A}$
Negative Supply Current	I-		Room Full	$\begin{aligned} & -1 \\ & -3 \end{aligned}$			

Vishay Siliconix

SPECIFICATIONS ${ }^{\text {a }}$

Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{aligned} & \mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}} \end{aligned}$	Temp ${ }^{\text {b }}$	$\begin{gathered} \text { D Suffix } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {d }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {d }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	0		12	V
On-Resistance	ron	$\mathrm{I}_{\mathrm{no} / \mathrm{nc}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=3,8 \mathrm{~V}$	$\begin{gathered} \text { Room } \\ \text { Full } \\ \hline \end{gathered}$		67	$\begin{aligned} & 85 \\ & 96 \\ & \hline \end{aligned}$	
On-Resistance MATCH	${ }^{\text {a }}$ ON	$\mathrm{V}+=10.8 \mathrm{~V}$	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$			4 5	Ω
On-Resistance Flatness	ron Flatness	$\begin{gathered} \mathrm{I}_{\mathrm{no} / \mathrm{nc}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=2,6,10 \mathrm{~V} \\ \mathrm{~V}+=10.8 \mathrm{~V} \end{gathered}$	Room Full		17	$\begin{aligned} & 25 \\ & 31 \end{aligned}$	
Dynamic Characteristics							
Turn-On Time	t_{ON}		Room Full		133	$\begin{aligned} & 168 \\ & 192 \end{aligned}$	
Turn-Off Time	$t_{\text {OFF }}$	$\mathrm{V}_{\mathrm{NO}, \mathrm{NC}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room Full		58	$\begin{aligned} & 92 \\ & 96 \end{aligned}$	nS
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$	Room		6		pC
Power Supplies							
Positive Supply Current	I+	$\mathrm{V}+=13.2 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}, 5 \mathrm{~V}$ or V_{+}	Room Full		3	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\mu \mathrm{A}$

Notes:

a. Refer to PROCESS OPTION FLOWCHART .
b. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

$r_{\text {ON }}$ vs. $\mathrm{V}_{\text {COM }}$ and Dual Supply Voltage
 On Resistance vs. $\mathrm{V}_{\text {com }}$ and Temperature

On Resistance vs. $\mathbf{V}_{\text {сом }}$ and Single Supply Voltage

On Resistance vs. $\mathrm{V}_{\text {com }}$ and Temperature

Leakage Current vs. Temperature

Vishay Siliconix
TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

TEST CIRCUITS

V_{O} is the steady state output with the switch on.

C_{L} (includes fixture and stray capacitance)

$$
V_{O}=V_{i} \quad \frac{R_{L}}{R_{L}+r_{O N}}
$$

Note: Logic input waveform is inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

Figure 2. Charge Injection

Figure 3. Off Isolation

Figure 4. Insertion Loss

Figure 5. Channel ON/OFF Capacitances

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?73897.

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

